Объект исследований как сложная система

Объект исследований как сложная система
1.1.1. В целях повышения эффективности исследований сложных строительных конструкций, возможности их максимальной автоматизации и снижения затрачиваемых ресурсов целесообразен подход, основанный на методологической концепции системного анализа [1…3] как одной из основных особенностей современной науки и техники. Это позволит выделить одинаковые для всех типов конструкций процедуры и этапы работ, максимально исключающие субъективность и направленные на оптимальное решение поставленных проблем.
Отсутствие единого теоретического обоснования или даже унифицированной совокупности методов, общих для всех объектов приложения системного анализа вынуждает для каждой проблемы строить свою методологию, впрочем, с обязательным включением общих принципов системности – ряда формальных и неформальных процедур.
1.1.2. Системный подход при исследовании сложных строительных конструкций носит комплексный характер. Объект исследования (конструкция или сооружение) рассматривается как сложная система со всеми необходимыми признаками: наличие подсистем (элементов), объединенных связями (физические, логические, математические), а также выполнение условия целостности функционирования.
1.1.3. В системном анализе при исследовании строительных конструкций выделяются следующие основные логические элементы – исходные категории: цель (или цели); исследования альтернативные средства достижения цели (физическое или математическое моделирование); ресурсы для решения проблемы; система связей между целями, средствами и ресурсами; критерии выбора предпочтительных альтернатив.
1.1.4. При системном подходе выбор методов исследований строительных конструкций производится с учетом их роли в целом. Оптимальные характеристики элементов системы – физических нематематических моделей– предполагают рассмотрение их как единого средства достижения цели. Поэтому физический и численный эксперименты должны быть с самого начала согласованы между собой, ориентированы на эффективное решение задач исследований, дополняя друг друга.
1.1.5. Исследования строительных конструкций и сооружений выполняются экспериментальными методами на натурных образцах и физических моделях либо теоретическими, с использованием расчетных моделей.
Физическое моделирование, основанное на теории простого или расширенного подобия, по мере усложнения задач исследований все менее целесообразно, так как не решает задач снижения трудоемкости и стоимости изготовления моделей, соблюдения планируемых сроков эксперимента.
1.1.6. Развитием численных методов расчета сложных конструкций, применением ЭВМ, широким внедрением в инженерную практику универсальных и специальных программных комплексов обусловливается экономическая целесообразность широкого использования в исследованиях сооружений расчетных моделей с назначением достоверных расчетных схем сооружений, ориентированных на решение конкретных исследовательских задач. Однако существующей в настоящее время диспропорцией между высоким уровнем автоматизации самого расчета и методикой построения достоверных расчетных схем реального сооружения существенно снижается надежность численных исследований, вносится известная доля субъективности в получаемые результаты.
Традиционно экспериментальные и численные исследования проводятся независимо друг от друга. В лучшем случае сопоставляются результаты. При этом проведенный анализ нисколько не повлияет на саму стратегию и методику эксперимента. Все это исключает существенное ускорение и повышение результативности работ.
1.1.7. Физический и численный (математический) эксперименты рассматриваются как единая система средств (организованный комплекс), направленных на наиболее эффективное решение задач исследования.
Расчетные и физические модели, как элементы системного анализа, по сравнению с аналогичными моделями, используемыми в обычных исследованиях, характеризуются целенаправленностью и ясностью. Системный подход обусловливает применение нового класса физических моделей, разработанных с использованием функционального подобия, что существенно упрощает их конструкцию и уменьшает объем экспериментальных исследований.
1.1.8. Сочетание при исследовании сложных строительных конструкций методов физического и математического моделирования обусловливает целесообразность применения принципа декомпозиции (членения) объекта исследований на более простые элементы, раздельные испытания которых потребуют гораздо меньше ресурсов по сравнению с испытаниями всей системы. Особенно этот принцип эффективен при исследовании сооружений, состоящих из большого количества однотипных элементов и узлов.
Расчетная модель системы может быть получена путем композиции расчетных моделей подсистем с проверкой их адекватности, что существенно упрощает процедуру установления достоверности.
1.1.9. В основу декомпозиции по п. 1.1.8 настоящих методических рекомендаций должны быть положены принципы, обеспечивающие системный подход к организации исследований:
затраты ресурсов на ведение работ должны быть меньше, чем без членения;
принцип декомпозиции должен выполняться с обеспечением независимости результатов исследований отдельных подсистем;
из возможных вариантов декомпозиции предпочтительнее тот, при котором порядок членения, определяемый максимальным количеством неизвестных расчетных параметров в каждой подсистеме, будет наименьшим.
При декомпозиции сложной системы важную роль играют так называемые неформальные методы, основанные на опыте и интуиции исследователя.
1.1.10. Рассматривая процесс исследования строительных конструкций как некоторую систему, необходимо выделить в ней три основные подсистемы:
экспериментальные исследования на физических моделях;
расчетные исследования на математических моделях;
связь между экспериментом и расчетом, включающая идентификацию некоторых параметров расчетной модели, проверку ее адекватности и корректировку.
1.1.11. В научном понимании между физическими и расчетными моделями существует общность (каждая из них представляет собой упрощенное воспроизведение процессов, происходящих в реальной системе и внешней обстановке).
Различие между ними заключается в средствах представления объекта исследований: физические модели – материальные системы, математические или расчетные – знаковые.
Общность физических и математических моделей обусловливает единообразие описания их характеристик и воздействий (входные параметры), а также функциональных параметров их состояния (выходные параметры), для чего используются символика и некоторые основные понятия теорий множеств и алгоритмов.
1.1.12. Признаки, по которым исследуемый объект выделяется из ассортимента других, образуют множество параметров Р. Изменение внешних условий, влияющих на состояние объекта. характеризуется множеством воздействий нагрузок N = {nK}. Естественно, что множества Р и N включают в себя лишь свойства и воздействия, связанные с изучаемой проблемой. Как правило, они определяются вместе с постановкой задачи до начала исследований.
В расчетных моделях объекта исследований множество Р разбивается на два подмножества: М = {т2} (параметры объекта, известные априори) и Χ = {хi} (параметры, подлежащие определению в процессе исследований).
При этом Р = МUX. Таким образом, результат исследований – множество параметров напряженно-деформированного состояния Y = {yi}.

Cхожі записи

Без категорії

admin

Architect PhD Oleg Prokopenko, Kyiv in Ukraine, +38 063 6087812

Залишити відповідь

Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *